Search results
Results from the WOW.Com Content Network
rfind(string,substring) returns integer Description Returns the position of the start of the last occurrence of substring in string. If the substring is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE. Related instr
In many programming languages, a particular syntax of strings is used to represent regular expressions, which are patterns describing string characters. However, it is possible to perform some string pattern matching within the same framework that has been discussed throughout this article.
A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
However, there can be many ways to write a regular expression for the same set of strings: for example, (Hän|Han|Haen)del also specifies the same set of three strings in this example. Most formalisms provide the following operations to construct regular expressions. Boolean "or" A vertical bar separates alternatives.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
A shift-reduce parser is a class of efficient, table-driven bottom-up parsing methods for computer languages and other notations formally defined by a grammar.The parsing methods most commonly used for parsing programming languages, LR parsing and its variations, are shift-reduce methods. [1]
Naively computing the hash value for the substring s[i+1..i+m] requires O(m) time because each character is examined. Since the hash computation is done on each loop, the algorithm with a naive hash computation requires O(mn) time, the same complexity as a straightforward string matching algorithm. For speed, the hash must be computed in ...