enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Branch point - Wikipedia

    en.wikipedia.org/wiki/Branch_point

    A branch of the logarithm is a continuous function L(z) giving a logarithm of z for all z in a connected open set in the complex plane. In particular, a branch of the logarithm exists in the complement of any ray from the origin to infinity: a branch cut. A common choice of branch cut is the negative real axis, although the choice is largely a ...

  3. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    A single branch of the complex logarithm. The hue of the color is used to show the argument of the complex logarithm. The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis.

  4. Principal branch - Wikipedia

    en.wikipedia.org/wiki/Principal_branch

    In this manner log function is a multi-valued function (often referred to as a "multifunction" in the context of complex analysis). A branch cut, usually along the negative real axis, can limit the imaginary part so it lies between −π and π. These are the chosen principal values. This is the principal branch of the log function.

  5. Principal value - Wikipedia

    en.wikipedia.org/wiki/Principal_value

    When the focus is on a single branch, sometimes a branch cut is used; in this case removing the non-positive real numbers from the domain of the function and eliminating as a possible value for Arg z. With this branch cut, the single-branch function is continuous and analytic everywhere in its domain.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  7. Dilogarithm - Wikipedia

    en.wikipedia.org/wiki/Dilogarithm

    Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at =, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis ( 1 , ∞ ) {\displaystyle (1,\infty )} .

  8. Polylogarithm - Wikipedia

    en.wikipedia.org/wiki/Polylogarithm

    The polylogarithm function is defined by a power series in z, which is also a Dirichlet series in s: ⁡ = = = + + +. This definition is valid for arbitrary complex order s and for all complex arguments z with | z | < 1; it can be extended to | z | ≥ 1 by the process of analytic continuation.

  9. Hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_function

    For complex arguments z with | z | ≥ 1 it can be analytically continued along any path in the complex plane that avoids the branch points 1 and infinity. In practice, most computer implementations of the hypergeometric function adopt a branch cut along the line z ≥ 1. As c → −m, where m is a non-negative integer, one has 2 F 1 (z) → ∞.

  1. Related searches branch cut of log z series in matlab function list with definition free

    log z branch cutbranch cut examples
    log z branchbranch cuts wiki