Search results
Results from the WOW.Com Content Network
A branch of the logarithm is a continuous function L(z) giving a logarithm of z for all z in a connected open set in the complex plane. In particular, a branch of the logarithm exists in the complement of any ray from the origin to infinity: a branch cut. A common choice of branch cut is the negative real axis, although the choice is largely a ...
A single branch of the complex logarithm. The hue of the color is used to show the argument of the complex logarithm. The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis.
In this manner log function is a multi-valued function (often referred to as a "multifunction" in the context of complex analysis). A branch cut, usually along the negative real axis, can limit the imaginary part so it lies between −π and π. These are the chosen principal values. This is the principal branch of the log function.
When the focus is on a single branch, sometimes a branch cut is used; in this case removing the non-positive real numbers from the domain of the function and eliminating as a possible value for Arg z. With this branch cut, the single-branch function is continuous and analytic everywhere in its domain.
ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at =, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis ( 1 , ∞ ) {\displaystyle (1,\infty )} .
The polylogarithm function is defined by a power series in z, which is also a Dirichlet series in s: = = = + + +. This definition is valid for arbitrary complex order s and for all complex arguments z with | z | < 1; it can be extended to | z | ≥ 1 by the process of analytic continuation.
For complex arguments z with | z | ≥ 1 it can be analytically continued along any path in the complex plane that avoids the branch points 1 and infinity. In practice, most computer implementations of the hypergeometric function adopt a branch cut along the line z ≥ 1. As c → −m, where m is a non-negative integer, one has 2 F 1 (z) → ∞.