Search results
Results from the WOW.Com Content Network
Metallography allows the metallurgist to study the microstructure of metals. A micrograph of bronze revealing a cast dendritic structure Al-Si microstructure. Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. [1]
Austempering is heat treatment that is applied to ferrous metals, most notably steel and ductile iron. In steel it produces a bainite microstructure whereas in cast irons it produces a structure of acicular ferrite and high carbon, stabilized austenite known as ausferrite. It is primarily used to improve mechanical properties or reduce ...
Bainite is a plate-like microstructure that forms in steels at temperatures of 125–550 °C (depending on alloy content). [1] First described by E. S. Davenport and Edgar Bain, [2] [3] it is one of the products that may form when austenite (the face-centered cubic crystal structure of iron) is cooled past a temperature where it is no longer thermodynamically stable with respect to ferrite ...
Metallurgy derives from the Ancient Greek μεταλλουργός, metallourgós, "worker in metal", from μέταλλον, métallon, "mine, metal" + ἔργον, érgon, "work" The word was originally an alchemist's term for the extraction of metals from minerals, the ending -urgy signifying a process, especially manufacturing: it was discussed in this sense in the 1797 Encyclopædia ...
Mild steel (carbon steel with up to about 0.2 wt% C) consists mostly of α-Fe and increasing amounts of cementite (Fe 3 C, an iron carbide). The mixture adopts a lamellar structure called pearlite . Since bainite and pearlite each contain α-Fe as a component, any iron-carbon alloy will contain some amount of α-Fe if it is allowed to reach ...
For a eutectoid steel (0.76% C), between 6 and 10% of austenite, called retained austenite, will remain. The percentage of retained austenite increases from insignificant for less than 0.6% C steel, to 13% retained austenite at 0.95% C and 30–47% retained austenite for a 1.4% carbon steel. A very rapid quench is essential to create martensite.
Widmanstätten structures made from ferrite sometimes occur in carbon steel, if the carbon content is below but near the eutectoid composition (~ 0.8% carbon). This occurs as long needles of ferrite within the pearlite. [16] Widmanstätten structures form in many other metals as well.
The modern steel industry is one of the largest manufacturing industries in the world, but also one of the most energy and greenhouse gas emission intense industries, contributing 8% of global emissions. [2] However, steel is also very reusable: it is one of the world's most-recycled materials, with a recycling rate of over 60% globally. [3]