enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Orthotropic material - Wikipedia

    en.wikipedia.org/wiki/Orthotropic_material

    Another example would be a biological membrane, in which the properties in the plane of the membrane will be different from those in the perpendicular direction. Orthotropic material properties have been shown to provide a more accurate representation of bone's elastic symmetry and can also give information about the three-dimensional ...

  4. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  5. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    Hooke's law is a mathematical consequence of the fact that the potential energy of the rod is a minimum when it has its relaxed length. Any smooth function of one variable approximates a quadratic function when examined near enough to its minimum point as can be seen by examining the Taylor series.

  6. Anelasticity - Wikipedia

    en.wikipedia.org/wiki/Anelasticity

    Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.

  7. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility .

  8. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    For example, an invariant with respect to the group of proper orthogonal transformations, called SO(3), is a quantity that remains constant under arbitrary 3D rotations. C {\displaystyle \mathbf {C} } possesses two linear invariants and seven quadratic invariants with respect to SO(3). [ 12 ]

  9. Hyperelastic material - Wikipedia

    en.wikipedia.org/wiki/Hyperelastic_material

    Consistency with linear elasticity is often used to determine some of the parameters of hyperelastic material models. These consistency conditions can be found by comparing Hooke's law with linearized hyperelasticity at small strains.