Search results
Results from the WOW.Com Content Network
Solid oxygen forms at normal atmospheric pressure at a temperature below 54.36 K (−218.79 °C, −361.82 °F). Solid oxygen O 2 , like liquid oxygen , is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum.
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (15 psi).
The free oxygen partial pressure in the body of a living vertebrate organism is highest in the respiratory system, and decreases along any arterial system, peripheral tissues, and venous system, respectively. Partial pressure is the pressure that oxygen would have if it alone occupied the volume. [88]
The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. [1]
A few compounds release O2 at mild temperatures. Chemical oxygen generators consist of chemical compounds that release O 2 when stimulated, usually by heat. They are used in submarines and commercial aircraft to provide emergency oxygen. Oxygen is generated by the high-temperature decomposition of sodium chlorate: [1] 2 NaClO 3 → 2 NaCl + 3 O 2
A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas. Other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines ...
Oxygen flows from areas with high partial pressure of oxygen (PO 2, also known as oxygen tension) to areas of lower PO 2. Air is typically around 21% oxygen, and at sea level, the PO 2 of air is typically around 159 mmHg. [2] Humidity dilutes the concentration of oxygen in air. As air is inhaled into the lungs, it mixes with water and exhaust ...
Methods of oxygen storage for subsequent use span many approaches, including high pressures in oxygen tanks, cryogenics, oxygen-rich compounds and reaction mixtures, and chemical compounds that reversibly release oxygen upon heating or pressure change. O 2 is the second most important industrial gas.