enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average .

  3. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.

  4. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  5. Weighted geometric mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_geometric_mean

    The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]

  6. Arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_mean

    A weighted average, or weighted mean, is an average in which some data points count more heavily than others in that they are given more weight in the calculation. [6] For example, the arithmetic mean of 3 {\displaystyle 3} and 5 {\displaystyle 5} is 3 + 5 2 = 4 {\displaystyle {\frac {3+5}{2}}=4} , or equivalently 3 ⋅ 1 2 + 5 ⋅ 1 2 = 4 ...

  7. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    Data can be binary, ordinal, or continuous variables. It works by normalizing the differences between each pair of variables and then computing a weighted average of these differences. The distance was defined in 1971 by Gower [1] and it takes values between 0 and 1 with smaller values indicating higher similarity.

  8. Inverse distance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_distance_weighting

    This method can also be used to create spatial weights matrices in spatial autocorrelation analyses (e.g. Moran's I). [1] The name given to this type of method was motivated by the weighted average applied, since it resorts to the inverse of the distance to each known point ("amount of proximity") when assigning weights.

  9. Harmonic mean - Wikipedia

    en.wikipedia.org/wiki/Harmonic_mean

    The weighted harmonic mean is the preferable method for averaging multiples, such as the price–earnings ratio (P/E). If these ratios are averaged using a weighted arithmetic mean, high data points are given greater weights than low data points. The weighted harmonic mean, on the other hand, correctly weights each data point. [14]