Search results
Results from the WOW.Com Content Network
In physics the Einstein-aether theory, also called aetheory, is the name coined in 2004 for a modification of general relativity that has a preferred reference frame and hence violates Lorentz invariance. These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether.
Einstein showed how the velocity of light in a moving medium is calculated, in the velocity-addition formula of special relativity. Einstein's theory of general relativity provides the solution to the other light-dragging effects, whereby the velocity of light is modified by the motion or the rotation of nearby masses.
As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and ...
An aether theorist would have regarded "...nor according to Maxwell's equations" as simply representing a misunderstanding on Einstein's part. Unfettered by any notion that the speed of light represents a cosmic limit, the aether theorist would simply have set velocity equal to c , noted that yes indeed, the light would appear to be frozen, and ...
The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, [1] of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles (see dust solution), and the second associated with a negative cosmological ...
In general relativity, a lambdavacuum solution is an exact solution to the Einstein field equation in which the only term in the stress–energy tensor is a cosmological constant term. This can be interpreted physically as a kind of classical approximation to a nonzero vacuum energy .
[3] [4] Einstein is best known by the general public for his mass–energy equivalence formula E = mc 2 (which has been dubbed "the world's most famous equation"). [5] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect ", a pivotal step in ...
By definition, the Einstein tensor of a null dust solution has the form = where is a null vector field. This definition makes sense purely geometrically, but if we place a stress–energy tensor on our spacetime of the form =, then Einstein's field equation is satisfied, and such a stress–energy tensor has a clear physical interpretation in terms of massless radiation.