Search results
Results from the WOW.Com Content Network
T4 is capable of undergoing only a lytic life cycle and not the lysogenic life cycle. The species was formerly named T-even bacteriophage, a name which also encompasses, among other strains (or isolates), Enterobacteria phage T2, Enterobacteria phage T4 and Enterobacteria phage T6.
Structural model at atomic resolution of bacteriophage T4 [1] The structure of a typical myovirus bacteriophage Anatomy and infection cycle of bacteriophage T4.. A bacteriophage (/ b æ k ˈ t ɪər i oʊ f eɪ dʒ /), also known informally as a phage (/ ˈ f eɪ dʒ /), is a virus that infects and replicates within bacteria and archaea.
The T4 rII system is an experimental system developed in the 1950s by Seymour Benzer for studying the substructure of the gene. The experimental system is based on genetic crosses of different mutant strains of bacteriophage T4 , a virus that infects the bacteria Escherichia coli .
Polynucleotide kinase is a T7 bacteriophage (or T4 bacteriophage) enzyme that catalyzes the transfer of a gamma-phosphate from ATP to the free hydroxyl end of the 5' DNA or RNA. The resulting product could be used to end-label DNA or RNA, or in ligation reactions.
LIN involves the antiholin rI protein of T4 (See TC# 1.E.8.1.1). [5] Lysis inhibition is an effective strategy to coordinate lysis timing with phage particle maturation and to exclude other phage. [6] The C-terminal periplasmic domain of T4 holin binds the periplasmic domain of T4 antiholin (RI; 97 aas) which like the holin, spans the membrane ...
Bacteriophage T4 replicating DNA was labeled with tritiated thymidine and examined by autoradiography. [3] The observed DNA replication intermediates included circular and branched circular concatemeric structures that likely arose by rolling circle replication .
The isolation of conditional lethal mutants of the bacterial virus T4 (bacteriophage T4) during 1962-1964 by members of the phage group at the California Institute of Technology provided an opportunity to study the function of virtually all of the genes that are essential for growth of the bacteriophage under laboratory conditions. [3]
Phage typing is based on the specific binding of phages to antigens and receptors on the surface of bacteria and the resulting bacterial lysis or lack thereof. [4] The binding process is known as adsorption. [5]