Search results
Results from the WOW.Com Content Network
Hardware-wise, a GNSS receiver is needed to interpret satellite signals and compute the user’s location. Nowadays, it is usually a single integrated circuit (IC).. Satellite navigation software is most commonly used on mobile devices, particularly mobile phones, to provide the positioning functionality.
A "GNSS compass" uses a pair of antennas separated by about 50 cm to detect the phase difference in the carrier signal from a particular GNSS satellite. [8] Given the positions of the satellite, the position of the antenna, and the phase difference, the orientation of the two antennas can be computed.
A satellite navigation device or satnav device, also known as a satellite navigation receiver or satnav receiver or simply a GPS device, is a user equipment that uses satellites of the Global Positioning System (GPS) or similar global navigation satellite systems (GNSS). A satnav device can determine the user's geographic coordinates and may ...
Assisted GNSS (A-GNSS) is a GNSS augmentation system that often significantly improves the startup performance—i.e., time-to-first-fix (TTFF)—of a global navigation satellite system (GNSS). A-GNSS works by providing the necessary data to the device via a radio network instead of the slow satellite link, essentially "warming up" the receiver ...
A software GNSS receiver is a Global Navigation Satellite System (GNSS) receiver that has been designed and implemented using software-defined radio.. A GNSS receiver, in general, is an electronic device that receives and digitally processes the signals from a navigation satellite constellation in order to provide position, velocity and time (of the receiver).
Satellite navigation solution for the receiver's position (geopositioning) involves an algorithm.In essence, a GNSS receiver measures the transmitting time of GNSS signals emitted from four or more GNSS satellites (giving the pseudorange) and these measurements are used to obtain its position (i.e., spatial coordinates) and reception time.
The Networked Transport of RTCM via Internet Protocol (NTRIP) is a protocol for streaming differential GPS (DGPS) corrections over the Internet for real-time kinematic positioning. NTRIP is a generic, stateless protocol based on the Hypertext Transfer Protocol HTTP/1.1 and is enhanced for GNSS data streams.
Accuracy depends on satellite geometry, local conditions, receiver capability and other variables, but typically the L1-only solution (VBS - Virtual Base Station) yields horizontal accuracy of < +/1 meter > 95% of the time and the L1/L2 solutions (OmniSTAR HP, OmniSTAR XP or HP/XP combined) provide horizontal accuracies of < +/- 15 cm > 95% of ...