enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Food web - Wikipedia

    en.wikipedia.org/wiki/Food_web

    Trophic species are functional groups that have the same predators and prey in a food web. Common examples of an aggregated node in a food web might include parasites, microbes, decomposers, saprotrophs, consumers, or predators, each containing many species in a web that can otherwise be connected to other trophic species. [11] [12]

  3. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...

  4. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    An example is the koala, because it feeds only on eucalyptus leaves. Primary consumers that feed on many kinds of plants are called generalists. Secondary consumers are small/medium-sized carnivores that prey on herbivorous animals. Omnivores, which feed on both plants and animals, can be considered as being both primary and secondary consumers.

  5. Heterotrophic nutrition - Wikipedia

    en.wikipedia.org/wiki/Heterotrophic_nutrition

    Heterotrophic nutrition is a mode of nutrition in which organisms depend upon other organisms for food to survive. They can't make their own food like Green plants. Heterotrophic organisms have to take in all the organic substances they need to survive. All animals, certain types of fungi, and non-photosynthesizing plants are heterotrophic.

  6. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  7. Trophic mutualism - Wikipedia

    en.wikipedia.org/wiki/Trophic_mutualism

    Specifically, "trophic mutualism" refers to the transfer of energy and nutrients between two species. This is also sometimes known as resource-to-resource mutualism. Trophic mutualism often occurs between an autotroph and a heterotroph. [1] Although there are many examples of trophic mutualisms, the heterotroph is generally a fungus or bacteria.

  8. Detritivore - Wikipedia

    en.wikipedia.org/wiki/Detritivore

    [2] Plant tissues are made up of resilient molecules (e.g. cellulose, lignin, xylan) that decay at a much lower rate than other organic molecules. The activity of detritivores is the reason why there is not an accumulation of plant litter in nature. [2] [3] Two Adonis blue butterflies lap at a small lump of feces lying on a rock.

  9. Marine protists - Wikipedia

    en.wikipedia.org/wiki/Marine_protists

    Although many ciliates are heterotrophs, a number of pelagic species are mixotrophic, combining both phagotrophic and phototrophic nutrition (Stoecker, 1998). The recognition of mixotrophy in the marine plankton food web has challenged the classical understanding of pelagic food webs, as autotrophy and heterotrophy are not necessarily two ...