Search results
Results from the WOW.Com Content Network
The term 1 / ρ 2 ∇ρ × ∇p is the baroclinic term. It accounts for the changes in the vorticity due to the intersection of density and pressure surfaces. The term ∇ × ( ∇ ∙ τ / ρ ), accounts for the diffusion of vorticity due to the viscous effects. The term ∇ × B provides for changes due to external body forces.
where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
N = 2, j = 1 : a two-bar linkage that is the lever; N = 4, j = 4 : the four-bar linkage; N = 6, j = 7 : a six-bar linkage. This must have two links ("ternary links") that support three joints. There are two distinct topologies that depend on how the two ternary linkages are connected.
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
For two-dimensional, plane strain problems the strain-displacement relations are = ; = [+] ; = Repeated differentiation of these relations, in order to remove the displacements and , gives us the two-dimensional compatibility condition for strains
Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.