enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    The boundary layer around a human hand, schlieren photograph. The boundary layer is the bright-green border, most visible on the back of the hand (click for high-res image). In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by

  3. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  4. Falkner–Skan boundary layer - Wikipedia

    en.wikipedia.org/wiki/Falkner–Skan_boundary_layer

    The basis of the Falkner-Skan approach are the Prandtl boundary layer equations. Ludwig Prandtl [2] simplified the equations for fluid flowing along a wall (wedge) by dividing the flow into two areas: one close to the wall dominated by viscosity, and one outside this near-wall boundary layer region where viscosity can be neglected without significant effects on the solution.

  5. Cebeci–Smith model - Wikipedia

    en.wikipedia.org/wiki/Cebeci–Smith_model

    The Cebeci–Smith model, developed by Tuncer Cebeci and Apollo M. O. Smith in 1967, is a 0-equation eddy viscosity model used in computational fluid dynamics analysis of turbulence in boundary layer flows. The model gives eddy viscosity, , as a function of the local boundary layer velocity profile. The model is suitable for high-speed flows ...

  6. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    Self-similar solutions appear whenever the problem lacks a characteristic length or time scale (for example, the Blasius boundary layer of an infinite plate, but not of a finite-length plate). These include, for example, the Blasius boundary layer or the Sedov–Taylor shell .

  7. Von Kármán constant - Wikipedia

    en.wikipedia.org/wiki/Von_Kármán_constant

    In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.

  8. Stanton number - Wikipedia

    en.wikipedia.org/wiki/Stanton_number

    The Stanton number arises in the consideration of the geometric similarity of the momentum boundary layer and the thermal boundary layer, where it can be used to express a relationship between the shear force at the wall (due to viscous drag) and the total heat transfer at the wall (due to thermal diffusivity).

  9. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.