Search results
Results from the WOW.Com Content Network
RNA-Seq can also be used to determine exon/intron boundaries and verify or amend previously annotated 5' and 3' gene boundaries. Recent advances in RNA-Seq include single cell sequencing, bulk RNA sequencing, [6] 3' mRNA-sequencing, in situ sequencing of fixed tissue, and native RNA molecule sequencing with single-molecule real-time sequencing. [7]
The single-cell RNA-Seq protocols vary in efficiency of RNA capture, which results in differences in the number of transcripts generated from each single cell. Single-cell libraries are usually sequenced to a depth of 1,000,000 reads because a large majority of genes are detected with 500,000 reads. [104]
RNA-seq measures the transcription of a specific gene by converting long RNAs into a library of cDNA fragments. The cDNA fragments are then sequenced using high-throughput sequencing technology and aligned to a reference genome or transcriptome which is then used to create an expression profile of the genes.
RNA Seq Experiment. The single-cell RNA-seq technique converts a population of RNAs to a library of cDNA fragments. These fragments are sequenced by high-throughput next generation sequencing techniques and the reads are mapped back to the reference genome, providing a count of the number of reads associated with each gene. [13]
Sequence coverage (or depth) is the number of unique reads that include a given nucleotide in the reconstructed sequence. [1] [2] Deep sequencing refers to the general concept of aiming for high number of unique reads of each region of a sequence. [3] Physical coverage, the cumulative length of reads or read pairs expressed as a multiple of ...
The earliest RNA-Seq work was published in 2006 with one hundred thousand transcripts sequenced using 454 technology. [40] This was sufficient coverage to quantify relative transcript abundance. RNA-Seq began to increase in popularity after 2008 when new Solexa/Illumina technologies allowed one billion transcript sequences to be recorded.
Small RNA sequencing (Small RNA-Seq) is a type of RNA sequencing based on the use of NGS technologies that allows to isolate and get information about noncoding RNA molecules in order to evaluate and discover new forms of small RNA and to predict their possible functions.
CITE-Seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) is a method for performing RNA sequencing along with gaining quantitative and qualitative information on surface proteins with available antibodies on a single cell level. [1] So far, the method has been demonstrated to work with only a few proteins per cell.