Search results
Results from the WOW.Com Content Network
These non-probabilistic existence theorems follow from probabilistic results: (a) a number chosen at random (uniformly on (0,1)) is normal almost surely (which follows easily from the strong law of large numbers); (b) some probabilistic inequalities behind the strong law. The existence of a normal number follows from (a) immediately.
The relation of free probability with random matrices is a key reason for the wide use of free probability in other subjects. Voiculescu introduced the concept of freeness around 1983 in an operator algebraic context; at the beginning there was no relation at all with random matrices.
The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.
Downward-lexicographic dominance, denoted , means that has a larger probability than of returning the best outcome, or both and have the same probability to return the best outcome but has a larger probability than of returning the second-best best outcome, etc. Upward-lexicographic dominance is defined analogously based on the probability to ...
In probability theory, such as Markov networks, the sum might be over the cliques of a graph; so, for the Ising model and other lattice models, the maximal cliques are edges. The fact that the potential function can be written as a sum usually reflects the fact that it is invariant under the action of a group symmetry , such as translational ...
A probability distribution can be represented by its moments (in the Gaussian case, the mean and covariance suffice, although, in general, even knowledge of all moments to arbitrarily high order still does not specify the distribution function uniquely), or more recently, by techniques such as Karhunen–Loève and polynomial chaos expansions ...
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
Within a system whose bins are filled according to the binomial distribution (such as Galton's "bean machine", shown here), given a sufficient number of trials (here the rows of pins, each of which causes a dropped "bean" to fall toward the left or right), a shape representing the probability distribution of k successes in n trials (see bottom of Fig. 7) matches approximately the Gaussian ...