Search results
Results from the WOW.Com Content Network
For a rectifiable curve these approximations don't get arbitrarily large (so the curve has a finite length). If a curve can be parameterized as an injective and continuously differentiable function (i.e., the derivative is a continuous function) f : [ a , b ] → R n {\displaystyle f\colon [a,b]\to \mathbb {R} ^{n}} , then the curve is ...
The intrinsic quantities used most often are arc length, tangential angle, curvature or radius of curvature, and, for 3-dimensional curves, torsion. Specifically: Specifically: The natural equation is the curve given by its curvature and torsion.
The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle. The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure).
where s is the arc length from a fixed point on the curve, ... If the curve is given in Cartesian coordinates as y(x), ... giving the formula for the radius of curvature:
Other lengths may be used—such as 100 metres (330 ft) where SI is favoured or a shorter length for sharper curves. Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795 , where D is degree and r is radius.
The equator of the unit sphere is a parametrized curve given by ((), ()) = (,) with t ranging from 0 to 2 π. The line element may be used to calculate the length of this curve. The line element may be used to calculate the length of this curve.
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...
The convex hull of every bounded rectifiable closed curve C has perimeter at most the length of C, with equality only when C is already a convex curve. Cauchy's surface area formula: Given any convex compact subset , let [| |] be the expected shadow area of (that is, is the orthogonal projection to a random hyperplane of ), then by integrating ...