Search results
Results from the WOW.Com Content Network
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density also called the magnetic field density or magnetic induction tesla (T), or equivalently, weber per square meter (Wb/m 2) capacitance: farad (F) heat capacity
Amplitude is a measure of a periodic variable in classical physics. Amplitude may also refer to: In mathematics and physics. Jacobi amplitude of Jacobi ...
Linearity, the extent to which the proportion between input and output amplitude is the same for high amplitude and low amplitude input; Noise, a measure of undesired noise mixed into the output; Output dynamic range, the ratio of the largest and the smallest useful output levels; Slew rate, the maximum rate of change of the output
An oscillator is a physical system characterized by periodic motion, such as a pendulum, tuning fork, or vibrating diatomic molecule.Mathematically speaking, the essential feature of an oscillator is that for some coordinate x of the system, a force whose magnitude depends on x will push x away from extreme values and back toward some central value x 0, causing x to oscillate between extremes.
In this type the derivative (slope) of the wave's amplitude (in sound waves the pressure, in electromagnetic waves, the current) is forced to zero at the boundary. So there is an amplitude maximum (antinode) at the boundary, the first node occurs a quarter wavelength from the end, and the other nodes are at half wavelength intervals from there:
The motion is periodic, repeating itself in a sinusoidal fashion with constant amplitude A. In addition to its amplitude, the motion of a simple harmonic oscillator is characterized by its period = /, the time for a single oscillation or its frequency = /, the number of cycles per unit time.
A(t) represents the time-varying amplitude of the sinusoidal carrier wave and the cosine-term is the carrier at its angular frequency, and the instantaneous phase deviation (). This description directly provides the two major groups of modulation, amplitude modulation and angle modulation.