enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    Figure 1B: Low-pass filter (1st-order, one-pole) Bode magnitude plot (top) and Bode phase plot (bottom). The red data curve is approximated by the straight black line. In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system.

  3. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.

  4. Stereographic projection - Wikipedia

    en.wikipedia.org/wiki/Stereographic_projection

    The homothety scales the image by a factor of 2 (a ratio of a diameter to a radius of the sphere), hence the values X and Y produced by this projection are exactly twice those produced by the equatorial projection described in the preceding section. For example, this projection sends the equator to the circle of radius 2 centered at the origin.

  5. Nyquist stability criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_stability_criterion

    The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...

  6. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    This radius to mass relationship has its roots in the liquid drop model as proposed by Gamow in 1930. [12] The graph on the right plots the radius-to-mass of the experimental charge radius (blue line) [2] as compared to the spherical approximation (green line). For light nuclides below A=40, the smooth curvilinear spherical radius plot ...

  7. Hendrik Wade Bode - Wikipedia

    en.wikipedia.org/wiki/Hendrik_Wade_Bode

    Hendrik Wade Bode (/ ˈ b oʊ d i / BOH-dee, Dutch:; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of research.

  8. Method of image charges - Wikipedia

    en.wikipedia.org/wiki/Method_of_image_charges

    Diagram illustrating the image method for Laplace's equation for a sphere of radius R. The green point is a charge q lying inside the sphere at a distance p from the origin, the red point is the image of that point, having charge −qR/p, lying outside the sphere at a distance of R 2 /p from the origin. The potential produced by the two charges ...

  9. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    Figure 2: Plot of the oblate spheroidal coordinates μ and ν in the x-z plane, where φ is zero and a equals one. The curves of constant μ form red ellipses, whereas those of constant ν form cyan half-hyperbolae in this plane. The z-axis runs vertically and separates the foci; the coordinates z and ν always have the same sign.