Search results
Results from the WOW.Com Content Network
Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water. It can be denoted by the symbols NH 3 (aq). Although the name ammonium hydroxide suggests a salt with the composition [NH + 4][OH −
Ammonia readily dissolves in water. In an aqueous solution, it can be expelled by boiling. The aqueous solution of ammonia is basic, and may be described as aqueous ammonia or ammonium hydroxide. [30] The maximum concentration of ammonia in water (a saturated solution) has a specific gravity of 0.880 and is often known as '.880 ammonia'. [31]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
Vapor over anhydrous ammonia [5]; Temp. Pressure ρ of liquid : ρ of vapor : Δ vap H: −78 °C: 5.90 kPa: −75 °C: 7.93 kPa 0.73094 g/cm 3: 7.8241×10 −5 g/cm 3: −70 °C: 10.92 kPa 0.72527 g/cm 3
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
When ammonia is dissolved in water, a tiny amount of it converts to ammonium ions: H 2 O + NH 3 ⇌ OH − + [NH 4] + The degree to which ammonia forms the ammonium ion depends on the pH of the solution. If the pH is low, the equilibrium shifts to the right: more ammonia molecules are converted into ammonium ions.