Search results
Results from the WOW.Com Content Network
The most frequently used general-purpose implementation of an associative array is with a hash table: an array combined with a hash function that separates each key into a separate "bucket" of the array. The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation.
An associative array stores a set of (key, value) pairs and allows insertion, deletion, and lookup (search), with the constraint of unique keys. In the hash table implementation of associative arrays, an array A {\displaystyle A} of length m {\displaystyle m} is partially filled with n {\displaystyle n} elements, where m ≥ n {\displaystyle m ...
Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key ...
In Lua, "table" is a fundamental type that can be used either as an array (numerical index, fast) or as an associative array. The keys and values can be of any type, except nil. The following focuses on non-numerical indexes. A table literal is written as { value, key = value, [index] = value, ["non id string"] = value }. For example:
Trie-Find(x, key) for 0 ≤ i < key.length do if x.Children[key[i]] = nil then return false end if x := x.Children[key[i]] repeat return x.Value In the above pseudocode, x and key correspond to the pointer of trie's root node and the string key respectively.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
Computing the hash value of a given key x may be performed in constant time by computing g(x), looking up the second-level function associated with g(x), and applying this function to x. A modified version of this two-level scheme with a larger number of values at the top level can be used to construct a perfect hash function that maps S into a ...