Search results
Results from the WOW.Com Content Network
A graphical or bar scale. A map would also usually give its scale numerically ("1:50,000", for instance, means that one cm on the map represents 50,000cm of real space, which is 500 meters) A bar scale with the nominal scale expressed as "1:600 000", meaning 1 cm on the map corresponds to 600,000 cm=6 km on the ground.
The length of the line on the linear scale is equal to the distance represented on the earth multiplied by the map or chart's scale. In most projections, scale varies with latitude, so on small scale maps, covering large areas and a wide range of latitudes, the linear scale must show the scale for the range of latitudes covered by the map. One ...
Once again, if Δφ may be read directly from an accurate latitude scale on the map, then the rhumb distance between map points with latitudes φ 1 and φ 2 is given by the above. If there is no such scale then the ruler distances between the end points and the equator, y 1 and y 2, give the result via an inverse formula:
The scale of a map projection must be interpreted as a nominal scale. (The usage large and small in relation to map scales relates to their expressions as fractions. The fraction 1/10,000 used for a local map is much larger than the 1/100,000,000 used for a global map. There is no fixed dividing line between small and large scales.)
The vertical exaggeration is given by: = where VS is the vertical scale and HS is the horizontal scale, both given as representative fractions.. For example, if 1 centimetre (0.39 in) vertically represents 200 metres (660 ft) and 1 centimetre (0.39 in) horizontally represents 4,000 metres (13,000 ft), the vertical exaggeration, 20×, is given by:
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).
This gives the map two standard parallels. In this way, deviation from unit scale can be minimized within a region of interest that lies largely between the two standard parallels. Unlike other conic projections, no true secant form of the projection exists because using a secant cone does not yield the same scale along both standard parallels. [2]
Scale at an angular distance of 5° (in longitude) away from the central meridian is less than 0.4% greater than scale at the central meridian, and is about 1.54% at an angular distance of 10°. In the secant version the scale is reduced on the equator and it is true on two lines parallel to the projected equator (and corresponding to two ...