enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω( n ) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS ).

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively.

  4. Lucas–Carmichael number - Wikipedia

    en.wikipedia.org/wiki/Lucas–Carmichael_number

    The smallest Lucas–Carmichael number with 4 factors is 8855 = 5 × 7 × 11 × 23. The smallest Lucas–Carmichael number with 5 factors is 588455 = 5 × 7 × 17 × 23 × 43. It is not known whether any Lucas–Carmichael number is also a Carmichael number. Thomas Wright proved in 2016 that there are infinitely many Lucas–Carmichael numbers. [1]

  5. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A prime number (or prime) is a ... For n ≥ 2, write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached. 2, 3, 211 ...

  6. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The progressions of numbers that are 0, 3, or 6 mod 9 contain at most one prime number (the number 3); the remaining progressions of numbers that are 2, 4, 5, 7, and 8 mod 9 have infinitely many prime numbers, with similar numbers of primes in each progression.

  7. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  8. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.

  9. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    Divisor function d(n) up to n = 250 Prime-power factors. In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.