Search results
Results from the WOW.Com Content Network
The magnetic pole model predicts correctly the field H both inside and outside magnetic materials, in particular the fact that H is opposite to the magnetization field M inside a permanent magnet. Since it is based on the fictitious idea of a magnetic charge density, the pole model has limitations. Magnetic poles cannot exist apart from each ...
Paramagnetic materials are attracted to magnetic fields, hence have a relative magnetic permeability greater than one (or, equivalently, a positive magnetic susceptibility). The magnetic moment induced by the applied field is linear in the field strength, and it is rather weak. It typically requires a sensitive analytical balance to detect the ...
For if a magnet is placed in a uniform magnetic field then both poles will feel the same magnetic force but in opposite directions, since they have opposite magnetic charge. But, when a magnet is placed in the non-uniform field, such as that due to another magnet, the pole experiencing the large magnetic field will experience the large force ...
Lightning is a natural phenomenon formed by electrostatic discharges through the atmosphere between two electrically charged regions, either both in the atmosphere or one in the atmosphere and one on the ground, temporarily neutralizing these in a near-instantaneous release of an average of between 200 megajoules and 7 gigajoules of energy, depending on the type.
Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned. This is better illustrated through the following relation: m = ∭ M d V {\displaystyle \mathbf {m} =\iiint \mathbf {M} \,\mathrm {d} V} where m is an ordinary magnetic ...
In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or Φ B. The SI unit of magnetic flux is the weber (Wb; in derived units, volt–seconds or V⋅s), and the CGS unit is the maxwell. [1]
By choosing a magnetic material with a high (BH) max, and also choosing the aspect ratio of the magnet so that its −BH is equal to (BH) max, the required volume of magnet to achieve a target flux density in the air gap is minimized. This expression assumes that the permeability in the core that is connecting the magnetic material to the air ...
In electromagnetism, the magnetic susceptibility (from Latin susceptibilis 'receptive'; denoted χ, chi) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M ( magnetic moment per unit volume ) to the applied magnetic field intensity H .