Search results
Results from the WOW.Com Content Network
A bone scan or bone scintigraphy / s ɪ n ˈ t ɪ ɡ r ə f i / is a nuclear medicine imaging technique used to help diagnose and assess different bone diseases. These include cancer of the bone or metastasis, location of bone inflammation and fractures (that may not be visible in traditional X-ray images), and bone infection (osteomyelitis). [1]
It is injected into a vein and distributed throughout the body, where it is preferentially absorbed in areas where cancer has invaded the bone. The radioisotope 153 Sm, with a half-life of 46.3 hours, decays by emitting beta particles ( electrons ), which kill the nearby cells.
[5] [6] Radium-223 dichloride is an alpha particle-emitting radiotherapy drug that mimics calcium and forms complexes with hydroxyapatite at areas of increased bone turnover. [7] The principal use of radium-223, as a radiopharmaceutical to treat metastatic cancers in bone , takes advantage of its chemical similarity to calcium , and the short ...
A medical isotope is an isotope used in medicine. The first uses of isotopes in medicine were in radiopharmaceuticals , and this is still the most common use. However more recently, separated stable isotopes have come into use.
Nuclear medicine imaging studies are generally more organ-, tissue- or disease-specific (e.g.: lungs scan, heart scan, bone scan, brain scan, tumor, infection, Parkinson etc.) than those in conventional radiology imaging, which focus on a particular section of the body (e.g.: chest X-ray, abdomen/pelvis CT scan, head CT scan, etc.).
Radiopharmaceuticals, or medicinal radiocompounds, are a group of pharmaceutical drugs containing radioactive isotopes. Radiopharmaceuticals can be used as diagnostic and therapeutic agents. Radiopharmaceuticals emit radiation themselves, which is different from contrast media which absorb or alter external electromagnetism or ultrasound.
For premium support please call: 800-290-4726 more ways to reach us
Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).