Search results
Results from the WOW.Com Content Network
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix.
The matrix multiplication exponent, usually denoted , is the smallest real number for which any matrix over a field can be multiplied together using + field operations. The current best bound on ω {\displaystyle \omega } is ω < 2.371552 {\displaystyle \omega <2.371552} , by Williams , Xu, Xu, and Zhou.
Strassen's algorithm improves on naive matrix multiplication through a divide-and-conquer approach. The key observation is that multiplying two 2 × 2 matrices can be done with only 7 multiplications, instead of the usual 8 (at the expense of 11 additional addition and subtraction operations).
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
Rings are a more general notion than fields in that a division operation need not exist. The very same addition and multiplication operations of matrices extend to this setting, too. The set M(n, R) (also denoted M n (R) [7]) of all square n-by-n matrices over R is a ring called matrix ring, isomorphic to the endomorphism ring of the left R ...
The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
The matrix chain multiplication problem generalizes to solving a more abstract problem: given a linear sequence of objects, an associative binary operation on those objects, and a way to compute the cost of performing that operation on any two given objects (as well as all partial results), compute the minimum cost way to group the objects to ...