Search results
Results from the WOW.Com Content Network
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates , they can be used to store arbitrary elements, such as integers or custom classes.
These types were left out of the C++ standard; similar containers were standardized in C++11, but with different names (unordered_set and unordered_map). Other types of containers bitset stores series of bits similar to a fixed-sized vector of bools. Implements bitwise operations and lacks iterators. Not a sequence. Provides random access. valarray
The C++ Standard Library provides several generic containers, functions to use and manipulate these containers, function objects, generic strings and streams (including interactive and file I/O), support for some language features, and functions for common tasks such as finding the square root of a number.
However, C++03 allows initializer-lists only on structs and classes that conform to the Plain Old Data (POD) definition; C++11 extends initializer-lists, so they can be used for all classes including standard containers like std::vector. C++11 binds the concept to a template, called std::initializer_list. This allows constructors and other ...
This undirected cyclic graph can be described by the three unordered lists {b, c}, {a, c}, {a, b}. In graph theory and computer science, an adjacency list is a collection of unordered lists used to represent a finite graph. Each unordered list within an adjacency list describes the set of neighbors of a particular vertex in the graph.
For example, reverse :: List a -> List a, which reverses a list, is a natural transformation, as is flattenInorder :: Tree a -> List a, which flattens a tree from left to right, and even sortBy :: (a -> a -> Bool) -> List a -> List a, which sorts a list based on a provided comparison function.
This page was last edited on 6 December 2011, at 12:57 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The list data structure allocates and deallocates memory as needed; therefore, it does not allocate memory that it is not currently using. Memory is freed when an element is removed from the list. Lists are efficient when inserting new elements in the list; this is an operation. No shifting is required like with vectors.