Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
(the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols). ⊃ {\displaystyle \supset } may mean the same as ⇒ {\displaystyle \Rightarrow } (the symbol may also mean superset ).
The code for the math example reads: <math display= "inline" > \sum_{i=0}^\infty 2^{-i} </math> The quotation marks around inline are optional and display=inline is also valid. [2] Technically, the command \textstyle will be added to the user input before the TeX command is passed to the renderer. The result will be displayed without further ...
The conversion to a base of an integer n represented in base can be done by a succession of Euclidean divisions by : the right-most digit in base is the remainder of the division of n by ; the second right-most digit is the remainder of the division of the quotient by , and so on. The left-most digit is the last quotient.
A dyadic function has short left scope: it takes as its left arguments the first piece of data to its left. For example, (leftmost column below is actual program code from an APL user session, indented = actual user input, not-indented = result returned by APL interpreter):