enow.com Web Search

  1. Ad

    related to: when is an ode linear equation given

Search results

  1. Results from the WOW.Com Content Network
  2. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...

  3. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are solutions of linear differential equations (see Holonomic function). When physical phenomena are modeled with non-linear equations, they ...

  4. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.

  5. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    [3] [4] The characteristic equation can only be formed when the differential or difference equation is linear and homogeneous, and has constant coefficients. [1] Such a differential equation, with y as the dependent variable, superscript (n) denoting n th-derivative, and a n, a n − 1, ..., a 1, a 0 as constants,

  6. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Consider the general, homogeneous, second-order linear constant coefficient ordinary differential equation. (ODE) ″ + ′ + =, where ,, are real non-zero coefficients. . Two linearly independent solutions for this ODE can be straightforwardly found using characteristic equations except for the case when the discriminant, , vanish

  7. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    Most of these LTI systems are derived from linear differential equations, where the non-homogeneous term is called the input signal and solution of the non-homogeneous equations is called the response signal. If the input signal is given exponentially, the corresponding response signal also changes exponentially.

  8. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    In multivariable calculus, an initial value problem [a] (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem.

  9. Singular solution - Wikipedia

    en.wikipedia.org/wiki/Singular_solution

    Consider the differential equation ′ = (). A one-parameter family of solutions to this equation is given by = ().Another solution is given by =Since the equation being studied is a first-order equation, the initial conditions are the initial x and y values.

  1. Ad

    related to: when is an ode linear equation given