Ad
related to: best afr for boost engine control valve kitebay.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
A 3-port solenoid-type boost controller A 4-port solenoid-type boost controller (used for a dual-port wastegate). The purpose of a boost controller is to reduce the boost pressure seen by the wastegate's reference port, in order to trick the wastegate into allowing higher boost pressures than it was designed for.
From 1976 through 1989, Chrysler equipped many vehicles with their Electronic Lean-Burn (ELB) system, which consisted of a spark control computer and various sensors and transducers. The computer adjusted spark timing based on manifold vacuum, engine speed, engine temperature, throttle position over time, and incoming air temperature.
The white area on the left side of the scale shows manifold vacuum under normal driving conditions, the short white dash is atmospheric pressure (engine off), the orange scale is where there is safe turbo boost, the red scale is boost above 0.5 - 0.7 bar where the wastegate may be opened or a fuel cut due to overboost may occur.
This is exactly the opposite of the first port. The ability to help the wastegate remain closed as boost pressure builds can be increased. This also adds further complexity to boost control, requiring more control ports on the solenoid or possibly a complete second boost control system with its own separate solenoid.
An exhaust gas temperature gauge (EGT gauge or EGT sensor) is a meter used to monitor the exhaust gas temperature of an internal combustion engine in conjunction with a thermocouple-type pyrometer. EGT gauges are found in certain cars and aeroplanes. By monitoring EGT, the driver or pilot can get an idea of the vehicle's air-fuel ratio (AFR).
Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion (e.g., a dust explosion ).
In order to improve the optimisation of the valve timing for differing engine speeds and loads, the system is able to vary the timing and duration of the inlet valve opening. It achieves this by using a complex and finely machined mechanism to drive the inlet camshafts.
Control of a MultiAir engine's intake valves works via a valve tappet (cam follower), moved by a mechanical intake cam, which is connected to the intake valve through a hydraulic chamber, controlled by a normally open on/off solenoid valve. [11] The system allows optimum timing of intake valve operation.
Ad
related to: best afr for boost engine control valve kitebay.com has been visited by 1M+ users in the past month