Search results
Results from the WOW.Com Content Network
The first xylem to develop is called 'protoxylem'. In appearance, protoxylem is usually distinguished by narrower vessels formed of smaller cells. Some of these cells have walls that contain thickenings in the form of rings or helices. Functionally, protoxylem can extend: the cells can grow in size and develop while a stem or root is elongating.
Cross section of celery stalk, showing vascular bundles, which include both phloem and xylem Detail of the vasculature of a bramble leaf Translocation in vascular plants. Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem ...
Specialized cell-to-cell communication pathways known as plasmodesmata, [5] occur in the form of pores in the primary cell wall through which the plasmalemma and endoplasmic reticulum [6] of adjacent cells are continuous. Plant cells contain plastids, the most notable being chloroplasts, which contain the green-colored pigment chlorophyll that ...
The entire surface of the plant consists of a single layer of cells called epidermis or surface tissue. The entire surface of the plant has this outer layer of the epidermis. Hence it is also called surface tissue. Most of the epidermal cells are relatively flat. The outer and lateral walls of the cell are often thicker than the inner walls.
These layers are called the palisade parenchyma and spongy mesophyll. Palisade parenchyma cells can be either cuboidal or elongated. Parenchyma cells in the mesophyll of leaves are specialised parenchyma cells called chlorenchyma cells (parenchyma cells with chloroplasts). Parenchyma cells are also found in other parts of the plant.
The epidermis is the outermost cell layer of the primary plant body. In some older works the cells of the leaf epidermis have been regarded as specialized parenchyma cells, [1] but the established modern preference has long been to classify the epidermis as dermal tissue, [2] whereas parenchyma is classified as ground tissue. [3]
The Azolla plant undergoes photosynthesis and provides fixed carbon for the Anabaena to use as an energy source for dinitrogenases in the heterocyst cells. [8] In return, the heterocysts are able to provide the vegetative cells and the Azolla plant with fixed nitrogen in the form of ammonia which supports growth of both organisms. [8] [9]
The metabolic functioning of sieve-tube members depends on a close association with the companion cells, a specialized form of parenchyma cell. All of the cellular functions of a sieve-tube element are carried out by the (much smaller) companion cell, a typical nucleate plant cell except the companion cell usually has a larger number of ...