enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knowledge distillation - Wikipedia

    en.wikipedia.org/wiki/Knowledge_distillation

    In machine learning, knowledge distillation or model distillation is the process of transferring knowledge from a large model to a smaller one. While large models (such as very deep neural networks or ensembles of many models) have more knowledge capacity than small models, this capacity might not be fully utilized.

  3. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    Limited-memory BFGS (L-BFGS or LM-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory. [1] It is a popular algorithm for parameter estimation in machine learning.

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    For example, machine learning has been used for classifying Android malware, [198] for identifying domains belonging to threat actors and for detecting URLs posing a security risk. [199] Research is underway on ANN systems designed for penetration testing, for detecting botnets, [ 200 ] credit cards frauds [ 201 ] and network intrusions.

  5. Prototype methods - Wikipedia

    en.wikipedia.org/wiki/Prototype_methods

    Prototype methods are machine learning methods that use data prototypes. [1] A data prototype is a data value that reflects other values in its class, [ 2 ] e.g., the centroid in a K -means clustering problem.

  6. Instance-based learning - Wikipedia

    en.wikipedia.org/wiki/Instance-based_learning

    One advantage that instance-based learning has over other methods of machine learning is its ability to adapt its model to previously unseen data. Instance-based learners may simply store a new instance or throw an old instance away. Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF ...

  7. MLOps - Wikipedia

    en.wikipedia.org/wiki/MLOps

    MLOps is the set of practices at the intersection of Machine Learning, DevOps and Data Engineering. MLOps or ML Ops is a paradigm that aims to deploy and maintain machine learning models in production reliably and efficiently. The word is a compound of "machine learning" and the continuous delivery practice (CI/CD) of DevOps in the software ...

  8. Sparse distributed memory - Wikipedia

    en.wikipedia.org/wiki/Sparse_distributed_memory

    Sparse distributed memory (SDM) is a mathematical model of human long-term memory introduced by Pentti Kanerva in 1988 while he was at NASA Ames Research Center. [1]This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines – e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas ...

  9. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    The reward model is usually initialized with a pre-trained model, as this initializes it with an understanding of language and focuses training explicitly on learning human preferences. In addition to being used to initialize the reward model and the RL policy, the model is then also used to sample data to be compared by annotators.