enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plant bioacoustics - Wikipedia

    en.wikipedia.org/wiki/Plant_bioacoustics

    [2] [3] [4] Because sound waves travel efficiently through soil and can be produced with minimal energy expenditure, plants may use sound as a means for interpreting their environment and surroundings. Preliminary evidence supports that plants create sound in root tips when cell walls break. [5] Because plant roots respond only to sound waves ...

  3. Energy flow (ecology) - Wikipedia

    en.wikipedia.org/wiki/Energy_flow_(ecology)

    A graphic representation of energy transfer between trophic layers in an ecosystem. Energy flow is the flow of energy through living things within an ecosystem. [1] All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain.

  4. Phonotropism - Wikipedia

    en.wikipedia.org/wiki/Phonotropism

    Phonotropism is the growth of organisms in response to sound stimuli. Root phonotropism is when the roots of a plant grow towards or away in response to a sound source. Acoustic cues are detected by the plant as sound waves which then induces a mechanistic response that changes plant behavior.

  5. Photorespiration - Wikipedia

    en.wikipedia.org/wiki/Photorespiration

    This ability to avoid photorespiration makes these plants more hardy than other plants in dry and hot environments, wherein stomata are closed and internal carbon dioxide levels are low. Under these conditions, photorespiration does occur in C 4 plants, but at a much lower level compared with C 3 plants in the same conditions.

  6. Ascent of sap - Wikipedia

    en.wikipedia.org/wiki/Ascent_of_sap

    The theory is intended to explain how water can reach the uppermost parts of the tallest trees, where the applicability of the cohesion-tension theory is debatable. [ 7 ] The theory assumes that in the uppermost parts of the tallest trees, the vessels of the xylem are coated with thin films of sap.

  7. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosystem II (of cyanobacteria and green plants) is composed of around 20 subunits (depending on the organism) as well as other accessory, light-harvesting proteins. Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene , two pheophytin , two plastoquinone , two heme , one bicarbonate, 20 lipids, the Mn

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Pressure flow hypothesis - Wikipedia

    en.wikipedia.org/wiki/Pressure_Flow_Hypothesis

    The pressure flow hypothesis, also known as the mass flow hypothesis, is the best-supported theory to explain the movement of sap through the phloem of plants. [1] [2] It was proposed in 1930 by Ernst Münch, a German plant physiologist. [3]