enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    SciPy (de facto standard for scientific Python) has scipy.optimize solver, which includes several nonlinear programming algorithms (zero-order, first order and second order ones). IPOPT (C++ implementation, with numerous interfaces including C, Fortran, Java, AMPL, R, Python, etc.) is an interior point method solver (zero-order, and optionally ...

  3. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    [5] [6] [7] They have also been developed for solving nonlinear systems of equations. [1] Relaxation methods are important especially in the solution of linear systems used to model elliptic partial differential equations, such as Laplace's equation and its generalization, Poisson's equation. These equations describe boundary-value problems, in ...

  4. Newton–Krylov method - Wikipedia

    en.wikipedia.org/wiki/Newton–Krylov_method

    Newton–Krylov methods are numerical methods for solving non-linear problems using Krylov subspace linear solvers. [1] [2] Generalising the Newton method to systems of multiple variables, the iteration formula includes a Jacobian matrix. Solving this directly would involve calculation of the Jacobian's inverse, when the Jacobian matrix itself ...

  5. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.

  6. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.

  7. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations, F ( u , λ ) = 0. {\displaystyle F(\mathbf {u} ,\lambda )=0.} [ 1 ] The parameter λ {\displaystyle \lambda } is usually a real scalar and the solution u {\displaystyle \mathbf {u} } is an n -vector .

  8. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Methods for solving differential-algebraic equations (DAEs), i.e., ODEs with constraints: Constraint algorithm — for solving Newton's equations with constraints; Pantelides algorithm — for reducing the index of a DEA; Methods for solving stochastic differential equations (SDEs): Euler–Maruyama method — generalization of the Euler method ...

  9. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    In mathematics and computing, the Levenberg–Marquardt algorithm (LMA or just LM), also known as the damped least-squares (DLS) method, is used to solve non-linear least squares problems. These minimization problems arise especially in least squares curve fitting.