enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...

  3. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...

  4. Category:Pi algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Pi_algorithms

    Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. A. ... Code of Conduct;

  5. A Google employee broke the world record for calculating pi - AOL

    www.aol.com/article/finance/2019/03/14/a-google...

    For premium support please call: 800-290-4726 more ways to reach us

  6. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    Though the BBP formula can directly calculate the value of any given digit of π with less computational effort than formulas that must calculate all intervening digits, BBP remains linearithmic ((⁡)), whereby successively larger values of n require increasingly more time to calculate; that is, the "further out" a digit is, the longer it ...

  7. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.

  8. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    For the first term in the Taylor series, all digits must be processed. In the last term of the Taylor series, however, there's only one digit remaining to be processed. In all of the intervening terms, the number of digits to be processed can be approximated by linear interpolation. Thus the total is given by:

  9. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Computation of the binary digits (Chudnovsky algorithm): 103 days; Verification of the binary digits (Bellard's formula): 13 days; Conversion to base 10: 12 days; Verification of the conversion: 3 days; Verification of the binary digits used a network of 9 Desktop PCs during 34 hours. 131 days 2,699,999,990,000 = 2.7 × 10 12 − 10 4: 2 August ...