Ads
related to: biggest real world problems algebra 1 without logs 2
Search results
Results from the WOW.Com Content Network
The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of โ 1 / 2 โ . A proof or disproof of this would have far-reaching implications in number theory, especially for the distribution of prime ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
For example, if s=2, then ๐(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly ๐²/6. When s is a complex number—one that looks like a+b๐, using ...
List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine [ edit ]
This category is intended for all unsolved problems in mathematics, including conjectures. Conjectures are qualified by having a suggested or proposed hypothesis. There may or may not be conjectures for all unsolved problems.
Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.
Arnold's Problems is a book edited by Soviet mathematician Vladimir Arnold, containing 861 mathematical problems from many different areas of mathematics. The book was based on Arnold's seminars at Moscow State University. The problems were created over his decades-long career, and are sorted chronologically (from the period 1956–2003).
Ads
related to: biggest real world problems algebra 1 without logs 2