Search results
Results from the WOW.Com Content Network
The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms, in order to calculate points of ...
A simple example with at least one pencil of curved surfaces: 1) all right circular cylinders with the z-axis as axis, 2) all planes, which contain the z-axis, 3) all horizontal planes (see diagram). A curvature line is a curve on a surface, which has at any point the direction of a principal curvature (maximal or minimal curvature). The set of ...
The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.
Viviani's curve as intersection of a sphere and a cylinder. In the case = +, the cylinder and sphere are tangential to each other at point (,,). The intersection resembles a figure eight: it is a closed curve which intersects itself. The above parametrization becomes
Viviani's curve is a special Clelia curve. For a Clelia curve the relation between the angles is =. Viviani's curve (red) as intersection of the sphere and a cone (pink) Subtracting 2× the cylinder equation from the sphere's equation and applying completing the square leads to the equation
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
Consider the following elementary example: the intersection of a parabola y = x 2 and an axis y = 0 should be 2 · (0, 0), because if one of the cycles moves (yet in an undefined sense), there are precisely two intersection points which both converge to (0, 0) when the cycles approach the depicted position.