Search results
Results from the WOW.Com Content Network
The terms correspondence, [16] dyadic relation and two-place relation are synonyms for binary relation, though some authors use the term "binary relation" for any subset of a Cartesian product without reference to and , and reserve the term "correspondence" for a binary relation with reference to and .
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain B = {0, 1}. Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science.
In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.. Let be a set.A (binary) relation between an element of and a subset of is called a dependence relation, written , if it satisfies the following properties:
A term's definition may require additional properties that are not listed in this table. In mathematics , a binary relation R is called well-founded (or wellfounded or foundational [ 1 ] ) on a set or, more generally, a class X if every non-empty subset S ⊆ X has a minimal element with respect to R ; that is, there exists an m ∈ S such that ...
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product.