enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    The absolute value function is continuous (i.e. it has no gaps). It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be ...

  3. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    If a continuous function on an open interval (,) satisfies the equality () =for all compactly supported smooth functions on (,), then is identically zero. [1] [2]Here "smooth" may be interpreted as "infinitely differentiable", [1] but often is interpreted as "twice continuously differentiable" or "continuously differentiable" or even just "continuous", [2] since these weaker statements may be ...

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The pointwise limit function need not be continuous, even if all functions are continuous, as the animation at the right shows. However, f is continuous if all functions f n {\displaystyle f_{n}} are continuous and the sequence converges uniformly , by the uniform convergence theorem .

  5. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...

  6. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    A function of class is a function of smoothness at least k; that is, a function of class is a function that has a k th derivative that is continuous in its domain. A function of class or -function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that ...

  7. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve .

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In summary, a function that has a derivative is continuous, but there are continuous functions that do not have a derivative. [13] Most functions that occur in practice have derivatives at all points or almost every point. Early in the history of calculus, many mathematicians assumed that a continuous function was differentiable at most points ...

  9. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function ⁡ (/) is a Darboux function even though it is not continuous at one point. An example of a Darboux function that is nowhere continuous is the Conway base 13 function.