Search results
Results from the WOW.Com Content Network
Both Fermi–Dirac and Bose–Einstein become Maxwell–Boltzmann statistics at high temperature or at low concentration. Bose–Einstein statistics was introduced for photons in 1924 by Bose and generalized to atoms by Einstein in 1924–25. The expected number of particles in an energy state i for Bose–Einstein statistics is:
All known particles obey either Fermi–Dirac statistics or Bose–Einstein statistics. A particle's intrinsic spin always predicts the statistics of a collection of such particles and conversely: [3] integral-spin particles are bosons with Bose–Einstein statistics, half-integral-spin particles are fermions with Fermi–Dirac statistics.
Fermi–Dirac statistics is most commonly applied to electrons, a type of fermion with spin 1/2. A counterpart to Fermi–Dirac statistics is Bose–Einstein statistics, which applies to identical and indistinguishable particles with integer spin (0, 1, 2, etc.) called bosons.
Using the results from either Maxwell–Boltzmann statistics, Bose–Einstein statistics or Fermi–Dirac statistics we use the Thomas–Fermi approximation (gas in a box) and go to the limit of a very large trap, and express the degeneracy of the energy states as a differential, and summations over states as integrals.
These statistical properties are described as Bose–Einstein statistics. Particles which exhibit antisymmetric states are called fermions. Antisymmetry gives rise to the Pauli exclusion principle, which forbids identical fermions from sharing the same quantum state. Systems of many identical fermions are described by Fermi–Dirac statistics.
Using the results from either Maxwell–Boltzmann statistics, Bose–Einstein statistics or Fermi–Dirac statistics, and considering the limit of a very large box, the Thomas–Fermi approximation (named after Enrico Fermi and Llewellyn Thomas) is used to express the degeneracy of the energy states as a differential, and summations over states ...
An important application of the grand canonical ensemble is in deriving exactly the statistics of a non-interacting many-body quantum gas (Fermi–Dirac statistics for fermions, Bose–Einstein statistics for bosons), however it is much more generally applicable than that. The grand canonical ensemble may also be used to describe classical ...
This is the first quantization approach and historically Bose–Einstein and Fermi–Dirac correlations were derived through this wave function formalism. In high-energy physics , however, one is faced with processes where particles are produced and absorbed and this demands a more general field theoretical approach called second quantization .