Search results
Results from the WOW.Com Content Network
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number.
In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function.
The analytic continuation of this zeta function ζ to all complex s ≠ 1; The entire function ξ(s), related to the zeta function through the gamma function (or the Π function, in Riemann's usage) The discrete function J(x) defined for x ≥ 0, which is defined by J(0) = 0 and J(x) jumps by 1/n at each prime power p n. (Riemann calls this ...
Similarly Selberg zeta functions satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. But there are also some major differences; for example, they are not given by Dirichlet series.
The function has the series expansion = = +, where = ()! [ ()] | = = [()], where the sum extends over ρ, the non-trivial zeros of the zeta function, in order of | |.. This expansion plays a particularly important role in Li's criterion, which states that the Riemann hypothesis is equivalent to having λ n > 0 for all positive n.
The Riemann zeta function belongs to a more general family of functions called L-functions. In 2010, new methods to obtain sub-convexity estimates for L-functions in the PGL(2) case were given by Joseph Bernstein and Andre Reznikov [ 36 ] and in the GL(1) and GL(2) case by Akshay Venkatesh and Philippe Michel [ 37 ] and in 2021 for the GL( n ...
Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height; Odlyzko, A. (1992), The 10 20-th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and discusses the results in detail.