Search results
Results from the WOW.Com Content Network
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
For example, if d = gcd(N,M) is not small, one can perform the transposition using a small amount (NM/d) of additional storage, with at most three passes over the array (Alltop, 1975; Dow, 1995). Two of the passes involve a sequence of separate, small transpositions (which can be performed efficiently out of place using a small buffer) and one ...
The transpose of a matrix A, denoted by A T, [3] ⊤ A, A ⊤, , [4] [5] A′, [6] A tr, t A or A t, may be constructed by any one of the following methods: Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain A T; Write the rows of A as the columns of A T; Write the columns of A as the rows of A T
In SQL the UNION clause combines the results of two SQL queries into a single table of all matching rows. The two queries must result in the same number of columns and compatible data types in order to unite. Any duplicate records are automatically removed unless UNION ALL is used.
The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an matrix made up of complex numbers. For an explanation of the notation used here, we begin by representing complex numbers e i θ {\displaystyle e^{i\theta }} as the rotation matrix, that is,
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.
These two operators form the symmetric and antisymmetric projections = of a vector = + + with respect to the involution A, in the sense that =, or =. The same construct applies to any involutory function , such as the complex conjugate (real and imaginary parts), transpose (symmetric and antisymmetric matrices), and Hermitian adjoint ...