Search results
Results from the WOW.Com Content Network
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...
In spherical trigonometry, the law of cosines (also called the cosine rule for sides [1]) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Spherical triangle solved by the law of cosines. Given a unit sphere, a "spherical triangle" on the surface of the sphere ...
For the spherical case, one can first compute the length of side from the point at α to the ship (i.e. the side opposite to β) via the ASA formula = (+) + (), and insert this into the AAS formula for the right subtriangle that contains the angle α and the sides b and d: = = + . (The planar ...
The excess, or area, of small triangles is very small. For example, consider an equilateral spherical triangle with sides of 60 km on a spherical Earth of radius 6371 km; the side corresponds to an angular distance of 60/6371=.0094, or approximately 10 −2 radians (subtending an angle of 0.57
The spherical excess can also be calculated from the three side lengths, the lengths of two sides and their angle, or the length of one side and the two adjacent angles (see spherical trigonometry). In the limit where the three side lengths tend to 0 {\displaystyle 0} , the spherical excess also tends to 0 {\displaystyle 0} : the spherical ...
The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...
The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:
The Book of Unknown Arcs of a Sphere written by the Islamic mathematician Al-Jayyani is considered to be the first treatise on spherical trigonometry. The book contains formulae for right-handed triangles, the general law of sines, and the solution of a spherical triangle by means of the polar triangle. [5]