Search results
Results from the WOW.Com Content Network
The degree of ionization (also known as ionization yield in the literature) refers to the proportion of neutral particles, such as those in a gas or aqueous solution, that are ionized. For electrolytes , it could be understood as a capacity of acid/base to ionize itself.
The degree of dissociation is the fraction of the original solute molecules that have dissociated. It is usually indicated by the Greek symbol α {\displaystyle \alpha } . There is a simple relationship between this parameter and the van 't Hoff factor.
It is usually indicated by the Greek symbol α. More accurately, degree of dissociation refers to the amount of solute dissociated into ions or radicals per mole. In case of very strong acids and bases, degree of dissociation will be close to 1. Less powerful acids and bases will have lesser degree of dissociation.
In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction
In physics, the Saha ionization equation is an expression that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. [ 1 ] [ 2 ] The equation is a result of combining ideas of quantum mechanics and statistical mechanics and is used to explain the spectral classification of stars.
Barium iodate, Ba(IO 3) 2, has a solubility product K sp = [Ba 2+][IO 3 −] 2 = 1.57 x 10 −9.Its solubility in pure water is 7.32 x 10 −4 M. However in a solution that is 0.0200 M in barium nitrate, Ba(NO 3) 2, the increase in the common ion barium leads to a decrease in iodate ion concentration.
The stomach's acidic pH and the subsequent alkalization in the intestine modifies the degree of ionization of acids and weak bases depending on a substance's pKa. [1] The pKa is the pH at which a substance is present at an equilibrium between ionized and non-ionized molecules. The Henderson–Hasselbalch equation is used to calculate pKa.
An example is presented in the figure to the right. The periodic abrupt decrease in ionization potential after rare gas atoms, for instance, indicates the emergence of a new shell in alkali metals. In addition, the local maximums in the ionization energy plot, moving from left to right in a row, are indicative of s, p, d, and f sub-shells.