enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dielectric loss - Wikipedia

    en.wikipedia.org/wiki/Dielectric_loss

    The ESR represents losses in the capacitor. In a low-loss capacitor the ESR is very small (the conduction is high leading to a low resistivity), and in a lossy capacitor the ESR can be large. Note that the ESR is not simply the resistance that would be measured across a capacitor by an ohmmeter. The ESR is a derived quantity representing the ...

  3. Dissipation factor - Wikipedia

    en.wikipedia.org/wiki/Dissipation_factor

    The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or

  4. Voltage droop - Wikipedia

    en.wikipedia.org/wiki/Voltage_droop

    In a regulator not employing droop, when the load is suddenly increased very rapidly (i.e. a transient), the output voltage will momentarily sag. Conversely, when a heavy load is suddenly disconnected, the voltage will show a peak. The output decoupling capacitors have to "absorb" these transients before the control loop has a chance to ...

  5. Equivalent series resistance - Wikipedia

    en.wikipedia.org/wiki/Equivalent_series_resistance

    Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance.However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a resistance; this resistance is defined as the equivalent series resistance (ESR) [1].

  6. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    In practice, capacitors deviate from the ideal capacitor equation in several aspects. Some of these, such as leakage current and parasitic effects are linear, or can be analyzed as nearly linear, and can be accounted for by adding virtual components to form an equivalent circuit. The usual methods of network analysis can then be applied. [34]

  7. Schering bridge - Wikipedia

    en.wikipedia.org/wiki/Schering_Bridge

    It has the advantage that the balance equation is independent of frequency. The connections of the Schering bridge under balance conditions are shown in the figure below. In this diagram: C1 = capacitor whose capacitance is to be determined, R1 = a series resistance representing the loss in the capacitor C1, C2 = a standard capacitor,

  8. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The equation is a good approximation if d is small compared to the other dimensions of the plates so that the electric field in the capacitor area is uniform, and the so-called fringing field around the periphery provides only a small contribution to the capacitance.

  9. Passive sign convention - Wikipedia

    en.wikipedia.org/wiki/Passive_sign_convention

    Illustration of the "reference directions" of the current (), voltage (), and power () variables used in the passive sign convention.If positive current is defined as flowing into the device terminal which is defined to be positive voltage, then positive power (big arrow) given by the equation = represents electric power flowing into the device, and negative power represents power flowing out.