Search results
Results from the WOW.Com Content Network
A locally cyclic group is a group in which each finitely generated subgroup is cyclic. An example is the additive group of the rational numbers: every finite set of rational numbers is a set of integer multiples of a single unit fraction, the inverse of their lowest common denominator, and generates as a subgroup a cyclic group of integer ...
The lattice of subgroups of the infinite cyclic group can be described in the same way, as the dual of the divisibility lattice of all positive integers. If the infinite cyclic group is represented as the additive group on the integers, then the subgroup generated by d is a subgroup of the subgroup generated by e if and only if e is a divisor ...
The additive group of rational numbers (Q, +) is locally cyclic – any pair of rational numbers a/b and c/d is contained in the cyclic subgroup generated by 1/(bd). [2]The additive group of the dyadic rational numbers, the rational numbers of the form a/2 b, is also locally cyclic – any pair of dyadic rational numbers a/2 b and c/2 d is contained in the cyclic subgroup generated by 1/2 max ...
G 0 is the trivial subgroup; G i is a normal subgroup of G i+1 (for every i between 0 and n - 1) and the quotient group G i+1 / G i is a cyclic group (for every i between 0 and n - 1) A metacyclic group is a polycyclic group with n ≤ 2, or in other words an extension of a cyclic group by a cyclic group.
A 3 is cyclic of order 3. A 4 is isomorphic to A 1 (3) (solvable). A 5 is isomorphic to A 1 (4) and to A 1 (5). A 6 is isomorphic to A 1 (9) and to the derived group B 2 (2)′. A 8 is isomorphic to A 3 (2). Remarks: An index 2 subgroup of the symmetric group of permutations of n points when n > 1.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
Cycles that contain a non-prime number of elements have cyclic subgroups that are not shown in the graph. For the group Dih 4 above, we could draw a line between a 2 and e since (a 2) 2 = e, but since a 2 is part of a larger cycle, this is not an edge of the cycle graph. There can be ambiguity when two cycles share a non-identity element.
For example, Z no longer qualifies, since one has [0, n, −1] for every n. As a corollary to Ćwierczkowski's proof, every Archimedean cyclically ordered group is a subgroup of T itself. [ 3 ] This result is analogous to Otto Hölder 's 1901 theorem that every Archimedean linearly ordered group is a subgroup of R .