Search results
Results from the WOW.Com Content Network
ln (r) is the standard natural logarithm of the real number r. Arg (z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg (x + iy) = atan2 (y, x). Log (z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
The Lambert W function is used to solve equations in which the unknown quantity occurs both in the base and in the exponent, or both inside and outside of a logarithm. The strategy is to convert such an equation into one of the form zez = w and then to solve for z using the W function. For example, the equation.
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
Logarithmic scale. A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences between the magnitudes of the numbers involved. Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each ...
Discrete logarithm. The problem of inverting exponentiation in finite groups. In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm log b a is an integer k such that bk = a.
Common logarithm. A graph of the common logarithm of numbers from 0.1 to 100. In mathematics, the common logarithm is the logarithm with base 10. [1] It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as ...
Calculus. In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.