Search results
Results from the WOW.Com Content Network
If a plane intersects a solid (a 3-dimensional object), then the region common to the plane and the solid is called a cross-section of the solid. [1] A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid ...
1. A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.
[3] [18] The first work of knot theory to include the Borromean rings was a catalog of knots and links compiled in 1876 by Peter Tait. [3] In recreational mathematics, the Borromean rings were popularized by Martin Gardner, who featured Seifert surfaces for the Borromean rings in his September 1961 "Mathematical Games" column in Scientific ...
In the mathematical field of topology, a section (or cross section) [1] of a fiber bundle is a continuous right inverse of the projection function. In other words, if E {\displaystyle E} is a fiber bundle over a base space , B {\displaystyle B} :
A section, or cross-section, is a view of a 3-dimensional object from the position of a plane through the object. A section is a common method of depicting the internal arrangement of a 3-dimensional object in two dimensions. It is often used in technical drawing and is traditionally crosshatched. The style of crosshatching often indicates the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space). [1] A solid figure is the region of 3D space bounded by a two-dimensional closed surface ; for example, a solid ball consists of a sphere and its interior .
In algebraic geometry, a lemniscate (/ l ɛ m ˈ n ɪ s k ɪ t / or / ˈ l ɛ m n ɪ s ˌ k eɪ t,-k ɪ t /) [1] is any of several figure-eight or ∞-shaped curves. [ 2 ] [ 3 ] The word comes from the Latin lēmniscātus , meaning "decorated with ribbons", [ 4 ] from the Greek λημνίσκος ( lēmnískos ), meaning "ribbon", [ 3 ] [ 5 ...