Search results
Results from the WOW.Com Content Network
One of several methods of finding a series formula for fractional iteration, making use of a fixed point, is as follows. [15] First determine a fixed point for the function such that f(a) = a. Define f n (a) = a for all n belonging to the reals. This, in some ways, is the most natural extra condition to place upon the fractional iterates.
Google Sheets is a spreadsheet application and part of the free, web-based Google Docs Editors suite offered by Google. Google Sheets is available as a web application; a mobile app for: Android, iOS, and as a desktop application on Google's ChromeOS. The app is compatible with Microsoft Excel file formats. [5]
A negative-order reversal of this sequence powers formula corresponding to the operation of repeated integration is defined by the zeta series transformation and its generalizations defined as a derivative-based transformation of generating functions, or alternately termwise by and performing an integral transformation on the sequence ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
When the computer calculates a formula in one cell to update the displayed value of that cell, cell reference(s) in that cell, naming some other cell(s), causes the computer to fetch the value of the named cell(s). A cell on the same "sheet" is usually addressed as: =A1 A cell on a different sheet of the same spreadsheet is usually addressed as:
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...
The most famous example of a Dirichlet series is = =,whose analytic continuation to (apart from a simple pole at =) is the Riemann zeta function.. Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write +: