Search results
Results from the WOW.Com Content Network
The bonding in carbon dioxide (CO 2): all atoms are surrounded by 8 electrons, fulfilling the octet rule. The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell , giving it the same electronic configuration as a noble gas .
[2] [25] Interestingly, the excited state does not obey the octet rule as the carbon atoms have an average 6.5 valence electrons surrounding them. Further, the internuclear region contains only three electrons, the same as in the benzene molecule ( see above ), and this explains why the carbon-carbon bond length in the excited state of ...
Satisfy the octet rule. Both oxygen atoms currently have 8 electrons assigned to them. The nitrogen atom has only 6 electrons assigned to it. One of the lone pairs on an oxygen atom must form a double bond, but either atom will work equally well. Therefore, there is a resonance structure. Tie up loose ends.
It is used for classifying compounds and for explaining or predicting their electronic structure and bonding. [1] Many rules in chemistry rely on electron-counting: Octet rule is used with Lewis structures for main group elements, especially the lighter ones such as carbon, nitrogen, and oxygen,
In most stable compounds of carbon (and nearly all stable organic compounds), carbon obeys the octet rule and is tetravalent, meaning that a carbon atom forms a total of four covalent bonds (which may include double and triple bonds).
On the other hand, some compounds that are normally written with ionic bonds in order to conform to the octet rule, such as ozone O 3, nitrous oxide NNO, and trimethylamine N-oxide (CH 3) 3 NO, are found to be genuinely hypervalent. Examples of γ calculations for phosphate PO 3− 4 (γ(P) = 2.6, non-hypervalent) and orthonitrate NO 3−
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.