enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantile regression - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression

    Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.

  3. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  4. Repeated median regression - Wikipedia

    en.wikipedia.org/wiki/Repeated_median_regression

    In robust statistics, repeated median regression, also known as the repeated median estimator, is a robust linear regression algorithm. The estimator has a breakdown point of 50%. [ 1 ] Although it is equivariant under scaling, or under linear transformations of either its explanatory variable or its response variable, it is not under affine ...

  5. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...

  6. Rao–Blackwell theorem - Wikipedia

    en.wikipedia.org/wiki/Rao–Blackwell_theorem

    A Rao–Blackwell estimator δ 1 (X) of an unobservable quantity θ is the conditional expected value E(δ(X) | T(X)) of some estimator δ(X) given a sufficient statistic T(X). Call δ(X) the "original estimator" and δ 1 (X) the "improved estimator". It is important that the improved estimator be observable, i.e. that it does not depend on θ.

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  8. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a continuous first derivative with respect to , then a necessary condition for an M-estimator of ψ-type to be an M-estimator of ρ-type is (,) = (,). The previous definitions can easily be extended to finite samples.

  9. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    For example, the ML estimator from the previous example may be attained as the limit of Bayes estimators with respect to a uniform prior, [,] with increasing support and also with respect to a zero-mean normal prior (,) with increasing variance. So neither the resulting ML estimator is unique minimax nor the least favorable prior is unique.