Search results
Results from the WOW.Com Content Network
A rainbow is a decomposition of white light into all of the spectral colors. Laser beams are monochromatic light, thereby exhibiting spectral colors. A spectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelength or frequency of light in the visible spectrum, or a relatively narrow spectral band (e.g. lasers).
The stages of the evolution of stars along the asymptotic giant branch from carbon star to planetary nebula appear on distinct regions of color–color diagrams (carbon stars tend to be redder than expected from their temperature due to the formation of carbon compounds in their atmospheres which absorb blue light). [11]
Köhler illumination is a method of specimen illumination used for transmitted and reflected light (trans- and epi-illuminated) optical microscopy.Köhler illumination acts to generate an even illumination of the sample and ensures that an image of the illumination source (for example a halogen lamp filament) is not visible in the resulting image.
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
The spectrum does not contain all the colors that the human visual system can distinguish. Unsaturated colors such as pink, or purple variations like magenta, for example, are absent because they can only be made from a mix of multiple wavelengths. Colors containing only one wavelength are also called pure colors or spectral colors. [8] [9]
Most applications involve a solid mounted in a reference liquid (referred to as the mounting medium). Second, dispersion colors will only be present if the two materials have the same refractive index for some wavelength in the visible spectrum (referred to as λo) and they have very different dispersions curves for the refractive index.
In both cases the numerical aperture of the objective is 1.49 and the refractive index of the medium 1.52. The wavelength of the emitted light is assumed to be 600 nm and, in case of the confocal microscope, that of the excitation light 500 nm with circular polarization. A section is cut to visualize the internal intensity distribution.
This is by design; the XYZ color matching functions are normalized such that their integrals over the visible spectrum are the same. [1] Illuminant E is not a black body, so it does not have a color temperature, but it can be approximated by a D series illuminant with a CCT of 5455 K. (Of the canonical illuminants, D 55 is the closest.)